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ABSTRACT: Permutation-based methods have received some attention in the
parapsychological literature. However, their potential for analyzing confusion
matrices associated with ESP experiments has been relatively untapped. This paper
presents permutation tests applied to confusion data in parapsychology. Some tests
examine agreement of two or more matrices with no regard to inherent internal
patterns within the matrices, whereas others test for the presence of more
sophisticated structures. Other possible methods for extracting structures from
one or more confusion matrices—seriation, cluster analysis, and scaling—are also
described in this paper. The range of possibilities for permutation-based analyses
applied to confusion in psi is limited only by the quantitative analyst’s imagination.
The methods presented in this paper are demonstrated using data gleaned from
the parapsychological literature. 

Although much of the emphasis in ESP studies involves statistical
analysis of the direct hits on the selected targets, the importance of
examining the structure of the misses has also been recognized (Rhine,
1952). For example, a considerable body of research has focused on the
displacement effect, which suggests that subject calls might precede or
succeed the presented targets by one or more places (Pratt & Foster, 1950;
Russell, 1943). A review of the displacement trend is provided by Milton
(1987). Crandall (1989) examined the displacement trend, noting the dry
spell of a few decades since it had initially been reported in parapsychological
literature.

A second, but less substantial, volume of research under the
umbrella of psi-missing is associated with the study of confusion sti uctuies
(Cadoret, 1957; Cadoret & Pratt, 1950; Kelly, 1980; Kelly, Kanthamani, Child,
& Young, 1975; Kennedy, 1979; Timm, 1969). As these authors have
observed, a systematic tendency to confuse certain targets with other tai gets
can also be indicative of the presence of ESP. Cadoret and Pratt (1950)
provided a significant contribution with their development of the consistent
missing (CM) theory, which reflects the propensity of subjects to exhibit
systematic patterns in their incorrect identifications of the targets. These
authors also proposed a x2 test for determining whether or not such
systematic patterns were present in the data. They noted the necessity of
developing a “method of evaluating the misses that was independent of the 
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number of hits" (Cadoret & Pratt, 1950, p. 245). In reference to the Fisk
and Mitchell (1953) and Fisk and West (1957) clock card experiments
designed to examine misses, Kennedy noted that “the CM analysis that
evaluates incorrect calls in isolation from direct hits has not been applied
to most of these data” (Kennedy, 1979, p. 116). Kelly et al. extended the
CM paradigm by comparing the resulting confusion structures of visual
recognition and ESP tasks for the same exceptional subject. Kelly et al.
used nonmetric multidimensional scaling (MDS) to reveal similarities between
the two confusion structures. In light of the substantive findings that can
be uncovered from confusion data, we should not be surprised to find that
future analyses in this area were strongly encouraged by Burdick and Kelly
(1977, p. 101): “The confusions methodology opens up a rich set of
possibilities for investigating the mechanisms of psi, and wre hope it will be
vigorously pursued in future work.”

Despite the suggestion for further development of methods for
studying ESP confusion data, research in this area remains rather scant.
This dearth of literature in parapsychology is in marked contrast to
experimental psychology; as this latter area has a literature base that is replete
with studies emphasizing the analysis of confusion structures. Psychological
pplications include visual recognition of letters and/or digits (Townsend,
971), visual recognition of textures (Cho, Yang, & Hallett, 2000), lipreading

(asks (Manning & Shofner, 1991), auditory recognition tasks (Morgan,
Chambers, & Morton, 1973), taste recognition (Hettinger, Gent, Marks, &
Frank, 1999), odor discrimination (Kent, Youngentob, & Sheehe, 1995),
and tactile recognition (Vega-Bermudez,Johnson, & Hsiao, 1991). This body
of research examines the study of confusion in sensory perception. Clearly,
research should be further extended in e.v/r<7sensory perception.

At least two important issues are associated with the study of
confusion matrices obtained from ESP experiments: (a) the implementation
of tests for the presence of systematic patterning in a single confusion matrix
or among multiple confusion matrices, and (b) the deployment of analytical
methods to uncover confusion structures that are masked by noisy data. In
this paper, permutation-based methods are presented to tackle both of the
issues related to analyzing confusion data from ESP experiments. Specifically,
straightforward permutation tests are proposed for measuring the level of
concordance among multiple confusion matrices with the same set of targets
as well as for evaluating the symmetry of a single confusion matrix. An
important aspect of one of these tests is the incorporation of information
about the internal structural properties of each confusion matrix when
testing concordance. For uncovering structure within one or more confusion
matrices, I propose the implementation of seriation methods, cluster
analysis, and scaling.

The next section of this article introduces permutation tests,
beginning with subsections to introduce terminology and provide
comparisons to familiar tests in parapsycholog}’. The subsequent section 
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describes and demonstrates permutation tests for testing concordance of
two (or more) matrices and for testing symmetry in a confusion matrix.
Prior to the concluding section, a brief section discusses other methods for
extracting structure from ESP confusion data—sedation, cluster analysis,
and scaling—to optimally order targets according to confusion.

Permutation Tf.sts to Examine Confusion in ParapsychologicalExperiments:
Background Literature and Terminology

Permutation-based methods for significance testing have been used
since the pioneering work of Pittman (1937) and Fisher (1935). Of course,
Fisher is also known for his work in parapsychology' (1928). However,
Edgington (1964, 1966, 1969) is generally credited with introducing
permutation-based methodology' to psychology’. Permutation tests are one
of the permutation-based methodologies and are not new to
parapsychological studies, dating as far back as Pratt and Birge (1948) who
used permutation tests to assess verbal material from mediums.

A couple of important distinctions need to be made. First, the
difference between permutation tests and randomization tests should be
clarified. A randomization test is a type of permutation test that incorporates
randomization. “Randomization test” originally referred to random
assignment of subjects to treatments, but contemporary researchers use
the term to refer to experiments in which stimuli are randomly selected
(Bradley, 1968; Edgington, 1995). Therefore, for general purposes, this
article uses the broader term “permutation test” and encourages
parapsychologists to apply’ randomization where appropriate. The second
clarification to be made is between confusion matrices and proximity
matrices. Proximity matrices often record “closeness” of objects or stimuli
in terms of similarity or dissimilarity. Confusion matrices record similarity
(or how easily targets are confused) in non-negative terms, where a larger
off-diagonal entry reflects greater confusion between two stimuli. Hence,
confusion matrices are a class of similarity matrices within the broader
context of proximity matrices.

In addition to similarity, confusion matrices are characterized by
asymmetry. The asymmetry refers to the tendency in real data to not always
record exact reverse confusion. For example, a circle might be called one
half of the time when a square was actually shown, yet a square might be
called only one third of the time when a circle was actually shown. Visually,
the upper right half of the matrix does not mirror the lower left half of the
matrix about the main diagonal.

The usual representation of correct and incorrect responses for
the n stimuli in psychological experiments is an n x n confusion matrix.
Rows are labeled according to targets or stimuli, whereas columns are labeled
according to calls or responses. The main diagonal of the matrix contains
the correct responses for each stimulus, whereas the incorrect/confused 
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responses correspond to the off-diagonal elements. Hence, the diagonal
elements are often irrelevant in the study of confusion. In some cases, the
entries in the confusion matrix are normalized to represent proportions
rather than raw numbers. Within the context of ESP experiments, main
diagonal entries are hits and off-diagonal entries are misses.

Many permutation tests involve the reordering of a matrix such
that both columns and rows are permuted similarly. That is, the data remain
accurately recorded but reordered, and the trace entries remain the same
but are reordered. This is the method used in the cases of examining
structure of matrices, concordance of matrices, and symmetry about the
diagonal of a matrix.

Finally, the demonstrations in this paper are exact tests performed
by total enumeration of all possible permutations of the targets. However,
computer speed and storage (i.e., RAM) generally determine the feasibility
of performing total enumeration for permutation tests with large target
sizes. For n > 13, permutation tests for confusion are usually approximate
tests, which entail random or pseudorandom sampling of permutations from
the set of all permutations for the test statistic being used. One reviewer for
this article recommended that the number of permutations should be at
least 50 divided by the probability of interest, e.g., 50,000 permutations for
evaluating p= .001 because 50,000 = 50/.001.

Examples of Familiar Tests in Relation to Permutation Testing

Intuitively, exact permutation tests simply evaluate an observed
outcome with respect to all possible alternative outcomes. Such tests have
been employed by parapsychologists, and those familiar tests are helpful in
understanding how permutation tests can be used to analyze confusion in
psi.

A popular statistical test used to evaluate association between two
categorical variables is Fisher’s Exact Test. In parapsychology, relatively recent
usage of Fisher’s Exact Test is seen in the research of cerebral hemisphere
dominance and ESP performance in the autoganzfeld (Alexander &
Broughton, 2001) as well as a more ghostly application (Maher, 1999).
Fisher’s test assumes random sampling, a directional hypothesis,
independent observation, mutual exclusivity, and a dichotomous level of
measurement. Although Fisher initially examined the 2x2 case, this test
can be extended to m x n matrices, however unwieldy that extended exercise
might be. Fisher’s Exact Test is salient in that it demonstrates how data in a
matrix can be altered to provide important information about the matrix
as a whole. Permutation tests can require order-preserving or order-reversing
transformations, such as converting similarity/dissimilarity matrices to
dissimilarity/similarity matrices. Other common practices involve
transformation by row-normalization or converting asymmetric matrices to 
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symmetric matrices. However, analysts are cautioned that not all pennutation
tests can tolerate such transformations.

Morris (1972) described a useful method for evaluating free-
response material, the preferential matching exact test with respect to Stuart
(1942). In particular, this test uses rankings of targets and compares the
sum of rankings to the number of possible rank sums of lesser value.
Naturally, the desirable circumstance is when the number of possible ranks
is equal to the number of trials. In this test, the free-response material is
considered and ranked as a whole, rather than atomisticly broken into
smaller units of information to be matched against characteristics of the
targets. Solfvin, Kelly, and Burdick (1978) extended and generalized the
work of Morris. Burdick and Kelly (1977) categorized the preferential
ranking and rating methods as one of the two main subclasses of holistic
approaches to analyzing parapsychological data, the other subclass being
forced-choice techniques. These methodologies are appropriate for
analyzing correct matchings; that is, the objective is to attain high ranks for
targets with their correct responses/protocols. An alternate judging scheme
is to have judges rank each target with each response/protocol (Schlitz &
Gruber, 1980), which produces an n x n asymmetric matrix more akin to a
confusion matrix.

Utts (1993, p.77) described an exact test presented by Scott (1972,
p. 87) that has been used rather extensively in the parapsychological
literature. The data are first arranged as detailed in the previous subsection
with “hits” recorded along the diagonal. The diagonal entries (i.e. the trace)
are summed. The columns are then reordered in all n! (where n! = n(«-
1)-21) possible permutations, with rows remaining in their original
ordering and each trace summed. The statistic, which requires a random
presentation of targets, is the proportion of sums that are as good as or
better than the sum for the original “correct” ordering. This statistic was
used by Targ (1994) in a remote-viewing replication study. Moreover, this
counting measure has been discussed with regard to data analysis from
Princeton Engineering Anomalies Research (Dobyns, Dunne, Jahn, &
Nelson, 1992; Hansen, Utts, & Markwick, 1992), particularly with regard to
the relevance of the diagonal entries. Unlike this counting measure in which
only columns are permuted and, hence, the diagonal changes, the
permutation tests presented in this paper require that the permutation be
applied to both columns and rows, and the diagonal entries are unaltered
although possibly reordered.

In this article, permutation tests are utilized to examine off-diagonal
entries in ESP confusion matrices. In parapsychological studies, the more
familiar use of permutation tests is in verification of, or comparison to,
correlation statistics for analysis of hits or direct correlations of variables,
such as the comparison made by Kennedy, Kanthamani, and Palmer (1994,
p. 365) of a permutation method (Edgington, 1995) to the Pearson
correlation coefficient. Schmidt, Schneider, Binder, Burkle, and Walach 
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(2001) performed a battery of tests to answer important questions
concerning the methodology and analysis of direct mental interaction between
living systems (DM1LS) via examination of eleclrodermal activity (EDS),
including percentage influence score (PIS), die paired / test, the Wilcoxon signed
rank test, and a two-component model of the Wilcoxon signed rank test
and randomized permutation analysis. Their permutation testing was
originally designed for waveform comparison testing (Blair & Karniski, 1993)
and adapted to study DM1LS data by Radin, Machado, & Zangari (1998).
The results of Schmidt et al. (2001) indicated that the Wilcoxon signed
rank test was the easiest test to perform without distribution assumptions.
However, they noted: “Full (100%) power can be reached by the permutation
test, but this method is not so easily applied and tends to take much time
with large session numbers” (p.79).

With the advent of increased computer power available to
researchers and with improvements in permutation-based methodologies,
the full-power tests become more plausible. Because the focus of this paper
is on permutation tests to analyze confusion, the examples are relatively
small and easily allow for total enumeration in testing. A useful algorithm
to systematically generate all permutations of n targets is provided in the
Appendix. Although total enumeration produces n! permutations to be
evaluated, not all exact permutation tests require so many permutations.

Permutation Tests for Evaluating Agreement
and Symmetry in Confusion Matrices

Tests Based on Agreement of Internal Confusion Structures

Once again referring to the psychological literature, comparisons
of confusion among the senses have been made, such as Loomis (1982, p.
46, Table 5), who reported correlation coefficients between visual and tactile
confusion matrices. With the aid of MDS, comparison between ESP and
visual perception of playing cards has been reported (Kelly et al., 1975) in
the parapsychological literature. For the ESP and visual perception data,
the playing cards are the targets and responses of the confusion matrices
yielding 13x13 matrices for the perception of numbers (ace through king)
and 4x4 matrices for the perception of suits (spade, club, heart, diamond).
Concordance can be more thoroughly examined in the parapsychological
literature by scrutinizing the internal structure of confusion matrices.

Hubert (1978, 1987) presents a number of indices that capture
internal structural characteristics within two or more matrices. One such
index, applied to two matrices, is a within-stimulus gradient among triads
of targets. As the name implies, relationships of responses (traveling down
the permutation) to each particular target are examined, effectively looking
at a confusion gradient along the permutation. The triad of targets is taken
from both matrices to effectively compare the confusion gradients in the 
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matrices to each other. The null hypothesis states that the two matrices
exhibit no concordance with respect to the patterning of elements within
their rows, that is, confusion in the matrices does not follow a similar pattern
across the targets. Like all permutation tests introduced in this article, the
resulting p value is one-tailed. The following pseudocode can be easily
inserted into the algorithm of the Appendix to calculate the within-stimulus
triad test statistic and distribution.

Stat = 0
for i = l:n
forj = l:n (i *j)
for k = l:n (i * k, j * k)

if Cl [i, j] > Cl [i, k] and
C2 [Targets(i), Targets(j)] > C2 [Targets(i), Targets(k)] then

Stat = Stat + 1 (Increment statistic as per “greater than" consistency.!
if Cl [i, j] < Cl [i , k] and

C2 [Targets(i), Targets(j)] < C2 [Targets(i), Targets(k)] then
Stat = Stat + 1 (Increment statistic as per “less than” consistency.)

if Cl [i, j] > Cl [i, k] and
C2 [Targets(i), Targcts(j)] < C2 [Targets(i), Targets(k)] then

Stat = Stat - 1 (Decrement statistic as per inconsistency.)
if Cl [i, j] < Cl [i, k] and

C2 [Targets(i), Targets^)] > C2 [Targets(i), Targets(k)] then
Stat = Stat - 1 (Decrement statistic as per inconsistency.) 

end for k
end forj
end for i
return Stat

To demonstrate the within-stimulus triad test, consider the 4x4
matrix for visual and ESP suit data from Kelly et al. (1975). Because
confusion data are usually presented with rows labeled by stimuli, the
within-stimulus triad test is effectively a within-row triad test. In Table 1,
the ESP matrix is permuted, and corresponding pairs of entries within
rows of the visual matrix— CVISUAL,—and the ESP matrix—Cts|„ C,^,, or
CB—are compared. Permutations were arbitrarily chosen as (C—D—
S—H) and (C—S—D—H) to establish the row/column orderings of
C„ and C„„„„ respectively. (Notice in Table 1 that the data are not
altered in the permuted matrices, merely reordered.) Similar
comparisons (greater than/less than) are given a positive sign whereas
dissimilar comparisons are given a negative sign. The signs are tallied to
yield an index for each matrix relative to the visual matrix. The index
reveals whether or not entries of two matrices tend to follow similar 
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patterns. The two permutations in this example illustrate the mediocrity
of the index value for the ESP matrix with the same ordering, C—S—
H—D, as the visual matrix. Ideally, we would list all possible permutations
of the ESP matrix. If we perform this operation on all 4! = 24 permutations
of the ESP matrix, we find that the indices range from -10 to 10.
Essentially, we use the index for the pair with the same ordering, -2, as a
baseline for comparison with all the calculated indices. Of the 24 possible
permutations, 19 had a within-triad stimulus index of-2 or larger, giving
a one-tailed p value of 19/24 = 0.7917. Clearly, the original ESP matrix,
CFSP, shows no significant concordance with the visual matrix, CVISUAL,
relative to the permuted matrices.

Table 1
Calculating the Concordance Index Between Visual Suit Data and ESP

Data

Visual (Cvisual) ESP (Cesp) ESP (Cesp(1)) ESP (Cesp(2))
C S H D C S H D C D S H C S D H

C 113 29 67 C 175 154 100 C 100 175 154 C 175 100 154
S 51 23 53 S 213 111 99 D 138 183 143 S 213 111
H71 39 212 H 163 195 96 S 213 99 111 D 138 183 143
D 60 67 53 D 138 183 143 H 163 96 195 H 163 195 96
113 > 29 175 > 154 (+1) 100 < 175 (-1) 175 > 100 (+1)
113 >67 175 >100 (+1) 100 <154 (-1) 175 >154 (+1)
29 <67 154 >100 (-1) 175 >154 (-1) 100 <154 (+1)
51 >23 213 >111 (+1) 138 <183 (-1) 213 > 99 (+1)
51 <53 213 > 99 (-1) 138 <143 (+1) 213 >111 (-1)
23 <53 111 > 99 (-1) 183 > 143 (-1) 99 < 111 (+1)
71 > 39 163 <195 (-1) 213 > 99 (+1) 138 <183 (-1)
71 < 212 163 > 96 (-1) 213 >111 (-1) 138 <143 (+1)
39 <212 195 > 96 (-1) 99 <111 (+1) 183 >143 (-1)
60 <67 138 <183 (+1) 163 >96 (-1) 163 <195 (+1)
60 >53 138 <143 (-1) 163 <195 (-1) 163 >96 (+1)
67 >53 183 >143 (+1) 96 < 195 (-1) 195 > 96 (+1)

(-2) (-6) (+6)

Note. Concordance indices are calculated for two permutations of the ESP
matrix to begin computing the overall test statistic for the visual and ESP
suit matrices (Kelly et al., 1975).
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A closer look at the target set yields more interesting results.
Specifically, the 13x13 matrix for the visual and ESP number data does
show significant concordance. I implemented the within-stimulus triad
test to determine the presence of a systematic relationship between the
within-stimulus structural properties of confusions in the 13 x 13 visual
recognition and ESP number matrices from the Kelly et al. (1975) study.
The observed index value is 185 with 458 consistencies and 273
inconsistencies. Out of 6,227,020,800 possible permutations, 27,053,516
had indices greater than or equal to 185. Hence, the one-tailed p value
is .004344554, indicating that the visual and ESP number matrices do
show fairly impressive similarity in within-stimulus patterning among the
off-diagonal (misses) entries.

The analyst should also be familiar with the Mantel (1967)
statistic, which provides a framework for determining a one-tailed p value
to test the conformity of two matrices defined on the basis of multiplying
corresponding matrix entries. The Mantel statistic simply adds the
products of corresponding entries, ignoring diagonal entries. A test of
agreement (or concordance) between two matrices can be performed
by generating a distribution of indices across all possible permutations
of the n targets in the second matrix. If computer resources provide the
feasibility to evaluate each of the n! permutations of the rows and columns
of the matrix, then a complete distribution for the Mantel statistic can
be determined and the actual statistic can be mapped to that distribution.
Otherwise, a random sampling of permutations can be used to
approximate the distribution for the test statistic. A succinct Mantel
statistic algorithm can be inserted into the algorithm of the Appendix.

Stat = 0
for i = l:n

for j = l:n (i * j)
Stat = Stat + Cl [i, j] * C2[Targets(i), Targets(j)]

endj
end i
return Stat

Table 2 shows the Mantel index for the observed data computed
for the 4x4 visual and ESP suit matrices from Kelly et al. (1975). The
index is also computed for the visual matrix and a permutation of the
ESP matrix. If the indices are computed for the remaining 22
permutations of the ESP matrix, then we can map the observed statistic
to the statistic distribution. Specifically, of the 24 permutations, 18 yield
indices that are as large or larger than 132,589. This gives us a one-
tailed /lvalue of 18/24 = .75.
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Table 2
Calculating the Mantel Index To Determine Concordance Between Visual

and ESP Suit Data

Visual suit ESP suit Permuted ESP suit
(CyreuAl) (CESP) ^ESr(3)^

C S H D C S II D D H s c

c 113 29 67 C 175 154 100 D 143 183 138
s 51 23 53 S 213 111 99 H 96 195 163
II 71 39 212 H 163 195 96 S 99 111 213
D 60 67 53 D 138 183 143 C 100 154 175

113*175 + 29*154 + 67*100 113*143 + 29*183 + 67*138
+51*213 + 23*111 + 53*99 +51*96 + 23*195 + 53*163
+71*163 + 39* 195 +212*96 +71*99 + 39*111 +212*213
+60*138 + 67 *183 + 53*143 +60*100 + 67 * 154 + 53*175
=117254 = 130839

Note. This begins computing of the overall test statistic for the visual and
ESP suit matrices (Kelly et al., 1975). The permutation is chosen as (D—
H—S—C).

For the 13x13 visual and ESP number matrices obtained by
Kelly et al. (1975), I used total enumeration for an exact test. The Mantel
index for these two matrices is 17381. Of the 6,227,020,800 possible
permutations of the 13 x 13 ESP number matrix, only 234,619
permutations yield an index as good as or better than 17381, giving the
concordance of the visual and ESP number matrices a one-tailed //value
of 234,619/6,227,020,800 = .00003768. Clearly, these two matrices have
significant concordance using the Mantel statistic.

Hubert (1978) observed that Mantel-type indices are not
necessarily invariant under monotone (order-preserving)
transformations of the data. Because the statistics are computed based
on one-to-one products of corresponding elements of matrices, different
significance level conclusions could be obtained after what might
otherwise be considered a standard transformation such as row­
normalization or ranking data. This caveat should not be confused with
data that are rated (or ranked) by judges. Even with this possible
limitation, the Mantel statistic is informative when applied properly. One
important application of the Mantel statistic is in uncovering symmetry
in confusion matrices.
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A Permutation Test for Assessing the Symmetry of a Confusion Matrix
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In psychological and parapsychological testing, subjects do not
always uniformly cross-confuse targets, due possibly to displacement, lag
and residual memory of previous targets. This tendency manifests itself
as asymmetry in confusion matrices. Investigating symmetry in an
asymmetric matrix might seem counterintuitive. However, because
confusion matrices tend to capture confusion as well as statistical noise,
uncovering a degree of symmetry is useful for analysts who wish to reveal
the most confusion and the least noise. Specifically, a high degree of
confusion among pairs of elements can indicate the need to revise choices
of targets in future experiments. Concordance, if not equality, between
a matrix and its transpose can uncover symmetry in the matrix (Hubert,
1987, p. 196). The analyst is reminded that any matrix can be reduced
to the sum of a symmetric matrix and a skew-symmetric matrix (Tobler,
1976).

A permutation test for the symmetry of a confusion matrix can
be obtained by calculating the Mantel index for the matrix and its
transpose (see Hubert & Baker, 1979 for an extended discussion of this
test). To obtain the transpose of a matrix, the rows of the matrix become
the columns and vice versa. To illustrate, we applied a symmetry test to
the visual recognition and ESP matrices forsuits from Kelly et al.’s (1975)
study as shown in Table 3. Once again, total enumeration was used to
generate the complete distributions for the test statistics. In both cases
for suits, the concordance index is relatively low, revealing a lack of
symmetry in both matrices with p values that are not significant. This
could be indicative of very noisy data in both matrices. Applying this
method to the 13x13 matrices for numbers, we see that the one-tailed
p value for visual data for numbers is significant, indicating very symmetric
tendencies in this matrix. The permutation testing also indicates
symmetry in the ESP data for numbers.

A Brief Note on Permutation Tests for Agreement of Three or More Confusion Matrices

To this point, the matrix permutation test has been described
within the context of comparing the agreement between two proximity
matrices. Hubert (1979a, 1979b) extended this permutation test to three
or more proximity matrices. The generation of the complete distribution
for the (n!)^ possible realizations of the index value is impractical for
most n and Q, where Q *s l'ie number of matrices. This limitation
necessitates the reliance on Monte Carlo sampling methods (i.e., using
random number generators) to evaluate the significance of the index.
If the statistic is sufficiently extreme with respect to the simulated 
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agreement, then the null hypothesis of no agreement among the matrices
is rejected.

Note. The original study by Kelly et al. (1975) reported p values according
to row-normalized data.

Table 3
The Mantel Statistic Applied to Matrices and Their Transposes to

Determine Presence of Symmetrical Data

Mantel
Index

Number of Permutations
Yielding Indices as Good as
or Better Than Observed
Data

one-tailed
p value

Visual Suit (4 x 4) 55052 16 .67
ESP Suit (4x4) 259334 21 .875
Visual Number (13 x 18294 831474 .00013353
13)
ESP Number (13 x 13) 26320 53189698 .00854176

Other Permutation-based Methods for Uncovering
Structure in Confusion Matrices

The preceding permutation tests are designed to examine structure
of confusion matrices as a means to understand confusion between targets.
Permutation tests analyze confusion (off-diagonal elements) by examining
confusion between pairs of targets, regardless of the ordering of rows and
columns of the confusion matrix/matrices. Very often, particularly in
parapsycholog}', full examination of confusion needs to engender an
understanding of confusion within an entire set of targets. To achieve this
goal, we should seek an optimal permutation to show a general flow of
confusion in the target set (as shown by seriation) and higher degrees of
confusion among subsets of the whole target set (as shown by cluster
analysis). The succeeding methodologies seek optimal permutations to order
the targets in terms of the degree of confusion they engender with other
targets. More specifically, we order the targets in such a way that targets are
placed “closer" in the sequence when they have a higher degree of confusion
relative to the other targets.

The following methodologies are presented with three objectives
in mind. First, they are presented to illustrate that permutation-based
methodologies are not limited to permutation tests. Second, comments
have been made in the parapsychological literature (for example, see May,
Utts, Humphrey, Luke, Frivold, & Trask, 1990) that indicate how these
methodologies might be useful. Finally, they are presented as mere
introductions rather than exhaustive and rigorous explanations.
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Serialion

Serialion is designed to obtain a permutation of rows and,
simultaneously, columns of one or more confusion matrices so as to more
clearly reveal structure among the stimuli. In parapsychology, an optimal
permutation will order the targets in such a way as to help explain the
relationships that may be present among the targets, or rather, among the
confusion/recognition of targets.

This methodology would probably be most usefid in
parapsychological experiments that atomistically break down descriptions
of images or concepts being perceived via anomalous cognition. If such
an experiment produced an optimal ordering that could be interpreted
as “sensible,” then anomalous cognition could be inferred and the
experimenter would have a reasonable direction in which to pursue
further research. For example, in the transcontinental remote-viewing
experiment of Schlitz and Gruber (1980), asymmetric matrices were
constructed with data for protocol sites and corresponding transcripts
for those sites. Five judges ranked each transcript with each site. (A
second matrix was constructed similarly with judges’ ratings.) Hubert
(1987) characterized the useful applications of serialion in psychology:
“For psychologists, the basic interest in the problem of seriation using
asymmetric proximities results from the experimental paradigm
commonly known as the technique of paired comparisons .... As a slight
variation that should be mentioned, each subject could be forced to
provide a linear ranking of the n objects.” (pp. 137-138). Schiltz and
Gruber explicitly stated that their target pool was carefully constructed
to contain several targets of given types, which certainly suggests that a
seriation according to confusion among those targets could be
illuminating.

The dominance index is perhaps the most widely used index for
seriation of asymmetric matrices (Hubert, Arabie, & Meulinan, 2001),
with a rich history in the biometric and psychometric literature (Brusco,
2002; Brusco & Stahl, 2001a; DeCani, 1969, 1972; Flueck & Korsh, 1974;
Hubert, 1976; Hubert & Golledge, 1981; Rodgers & Thompson, 1992).
Essentially, maximization of the dominance index is achieved by finding
a permutation that maximizes the sum of confusion elements above the
main diagonal. For any pair of targets, the tendency will be to place
target i to the left of target j in the sequence if target j is more often
mistakenly called for target i than target (is mistakenly called for target
j. Lawler (1964) provides a mathematical model and recommends using
the optimization process known as dynamic programming to achieve
this end.

Alternative seriation goals can determine which criteria an analyst
chooses to use to optimally seriate targets/responses. For example, Hubert
and Golledge (1981) suggested a nonmetric counting rule, which examines 
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each column and, for each of the entries above the main diagonal in that
column, accumulates the number of times the entry is larger than lower
triangle entries in the same column. Notice that this criterion examines
within-column (or, for parapsychological confusion matrices, within-
rcsponse) relationships between entries, somewhat like an upside-down
within-slimulus triad test, and seeks to arrange the data in such a way as to
show the patterning more clearly.

Aside from choosing the proper criteria for seriation, an analyst
must choose an optimization procedure. Because seriation presents
combinatorial problems, difficulty increases exponentially as the number
of targets increases. Just as the size of the target set often determines
whether we use exactor approximate permutation tests to evaluate degree
of matrix structure, the size of the target set determines whether we use
optimal or heuristic methods to uncover matrix structure via seriation.
Dynamic programming is the preferred solution procedure when there
are roughly 25 or fewer targets in the set (Brusco & Stahl, 2001a; Hubert
et al., 2001; Hubert & Golledge, 1981). Branch-and-bound or integer
programming methods can sometimes provide optimal solutions for even
larger target sets (see Brusco, 2001; DeCani, 1972; Flueck & Korsh, 1974
ror extended discussions of these methods). In short, optimal procedures
ire achieved with total enumeration (n < 13), dynamic programming
(w < 25), and either branch-and-bound techniques or integer linear
programming (n < 35). However, very large problems require heuristic
procedures, which often obtain optimal or near-optimal solutions in a
reasonable lime frame for problems that would otherwise be intractable.

Unidimensional Scaling Techniques

Seriation can be considered “unidimensional seriation” in that
the resulting permutation can be considered placement of stimuli on a
number line in an optimal order. Unidimensional scaling goes a step
further in that the stimuli are placed along a number line in accordance
with their relationship to one another, with greater distance indicating
less confusion between the stimuli. Not surprisingly, the seriation
methodology in the previous section is fundamental to unidimensional
scaling.

A matrix is said to have Robinson structure when values within
the matrix decrease moving from the diagonal toward the sides in the
rows and moving from the diagonal toward the top/bottom in the
columns (Robinson, 1951). For example, looking at the C^,, matrix in
Table 2, the rows C, S, and H have Robinson form, whereas the row D
does not. Anti-Robinson structure, the opposite of Robinson structure
patterning, is especially important for the purpose of unidimensional
scaling. Just as the dominance index is often used to describe asymmetric 



Permutation-Based Methods for Examining Confusion Data 395

matrices, Anti-Robinson structure is generally used to describe symmetric
matrices. In fact, for symmetric matrices, perfect Anti-Robinson form is
indicative of scalability on a number line.

Cluster Analysis

Cluster-analytic techniques provide another option for
recovering structure from confusion data. These methods have not been
widely deployed in parapsychological research but there are some
noteworthy exceptions. Utts (1993) describes an especially important
implementation wherein hierarchical clustering methods were used to
form target packets for remote viewing experiments (see also Humphrey,
May, & Utts, 1988). Analogous similarity or dissimilarity indices could
be constructed from confusion data, and there are a number of
techniques that could be applied to partition the targets based on this
information. For example, Bruscoand Stahl (2001b) recently developed
a number of mathematical programming models that can be used to
select subsets of targets from confusion matrices. Such cluster-analytic
partitioning maximizes similarity within clusters and maximizes
dissimilarity between clusters, that is, strives to make clusters
homogeneous and well separated. These methods are quite flexible anti
can incorporate information from the main diagonal hits as well as the
off-diagonal confusions.

There are important methodological choices, such as the
appropriate similarity (or dissimilarity) measure, the appropriate
clustering index (just as we would choose an appropriate seriation
criterion or permutation lest statistic), and the number of clusters and
their relative sizes. Therefore, deployment of clustering techniques for
confusion matrices is apt to be in experiments designed such that there
is a theoretically plausible model for consistent missing, such as a model
to examine whether people confuse shapes more often than colors or
vice versa. In these situations, a priori hypotheses regarding the number
of clusters exist, and thus clustering methods are a natural choice.

I applied a partitioning algorithm to the 13 x 13 visual and ESP
number matrices taken from Kelly et al. (1975). The raw confusion data
were converted to a symmetric dissimilarity matrix by adding the
corresponding matrix elements about the diagonal and then subtracting
the sums from maximum across all sums. The objective of the partitioning
algorithm was to minimize the maximum dissimilarity between pairs ol
objects in the same cluster, known as the partition diameter. A six-cluster
solution was obtained as shown in Table 4 for the visual and ESP number
data from Kelly et al. Half of the clusters are identical and the other half
are similar. Although this methodology does not produce the graphic
representation as MDS does (as employed by Kelly et al.), the information 
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is relatively easy to glean and, in this case, revealing in the similarity
between the visual and ESP clusters.

Table 4
Results of Partitioning Cluster Analysis Minimizing Partition Diameter

forthe Visual and ESP Number Data from Kelly, et al. (1975)

Cluster Visual number data ESP number data

1 {A, 2,3} {A, 2, 3}
2 {4,5} {4, 9}
3 {6, 7} {5, 6, 7}
4 {8} {8}
5 {9,10} {10}
6 {J, Q, K} {J, Q, K}

Discussion

The study of confusion need not be confusing. By taking advantage of
methodologies developed in other fields, parapsychologists can closely examine
the often chaotic, noisy, and/or imprecise confusion in psi abilities. The
analytical tools presented in this paper—permutation tests, seriation, and cluster
analysis—represent some of the well-developed tools for studying confusion.

Most of litis methodology is familiar to analytical parapsychologists.
Permutation testing and cluster analysis have been used in parapsychological
analyses but not fully exploited and not applied to the study of confusion in
extrasensory perception. For example, cluster analysis has been used to analyze
remote viewing data (May et al., 1990; Utts, 1993), and the counting method
on the trace of matrices (Scott, 1972) has also been used to examine remote
viewing data (Schlitz & Gruber, 1980). However, the complex, atomistic lists of
characterizations of targets in remote viewing Dials suggest that seriation might
prove more enlightening than sharply cut clusters. In fact, May et al. (1990)
suggested '’refinement of cluster analysis for targets, in an effort to simulate, as
closely as possible, what is meant by ‘visual similarity’ between targets” and
“refinement of the analysis of responses, in an effort to achieve even greater
correlations between the fuzzy set figure or merit analysis and various forms of
ground truth” (p. 210). This does seem to suggest that seriation, which could
provide more of a flowing continuum of similarity/dissimilarity than distinct
clusters, would be useful.

Pennutation tests are not die ideal mediodology for all circumstances.
For example, Utts (1989) described some serious problems with Gilmore’s
(1989) suggestion for using pennutation tests for the matching of patterned
target sequences. In addition, die results of Rasmussen (1989) and Hayes (1996)
are good examples of potenual problems with pennutauon tests when used to 
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test hypotheses regarding population parameters. Although permutation tests
tend to be free of distributional assumptions, some assumptions (e.g.,
homogeneity of variance) might be required if the objective is to test a parameter.
Despite these caveats, permutation tests are broadly applicable and are quite
easy to implement. The marked increases in computer processing speed that
have arisen since the development of these methods permit complete
distribution generation when the number of targets is modest, and also enable
a larger number of simulated trials when total enumeration is not
computationally feasible. Furthermore, contemporary methodologies exist to
enhance permutation-based methodologies in tenns of computation feasibility
and usefulness in analyses.

I have presented and demonstrated a range of methods using
published confusion data from the parapsychological literature. Of course,
the selection of criteria for permutation tests should be motivated by the
particular research problem at hand. As observed by Kennedy (1979),
implementations should be driven by good theory. We echo the sentiment
expressed by Burdick and Kelly (1977) more than 25 years ago, and sincerely
hope that availability of the procedures described in this article will foster
more research regarding confusion structures in ESP data.
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APPENDIX

Systematic Generation of Permutations

Determine the number of targets, n.
Set Index = 1 and np = 1, where np is the tally of the total number of
pennutations. Notice that npis initialized at 1 because the first permutation
is given as the simple enumeration of targets, l...n.
Set the current position under consideration, Position = n - 1.

for i= l:n
Targets (I) = i
(Enumerate the targets in a vector. Notice that the initial
enumeration inherently places the target positions from least to
greatest. These are the initial positions of the targets and the
assigned values of the targets during the permutation generation
process.)
Selection (0 = 1
(Initialize a vector to be used in the systematic selection of targets 1
if already selected in a permutation, else 0. In this case, all positions
are assigned at the start.!

end
Evaluate the Actual statistic.
while Position > 0

if Targets(Posth'on) > Targets(Posz/ion + 1)
Position = Position - 1
continue
(This pushes the targets in the final positions towards the
beginning of the permutations being generated. If the
assigned value of the target in Position is greater than the
assigned value of the target in the next position, then skip
the “else” and try again.)

else
Marker = Targets (Position)
(The Marker is the target in the position under

consideration)
forj= Posit ion: n

Selection (Targets (/)) = 0
(De-select the targets holding the higher positions.!

end
forj = Marker + l:n

if Selection (j) = 0
Targets {Position) -j
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{Set the target in Position to its next largest
available value.)

Selection (j) = I
break
(Prevent selection of more than 1 target.)

end
end
Marker? = Position
[Marker? assists in assigning unselected targets to

unoccupied positions.)
for j = l:n

if Selection (j) = 0
Marker? = Marker? + 1
Targets (Marker?) =j
Selection (j) = 1

end
end
np = np + 1
Evaluate the index given the full permutation of Targets.
If the generated permutation produced an index more
extreme than the actual statistic, then increment Index.
Position =n-l
(If Position was decremented at the beginning of the whole
loop on a previous pass, then reset it to n-1.)

end
end
Finally, calculate the one-tailed /wahie, pl = Index/np.


